On PID and biorthogonal systems

Christina Brech

Universidade de São Paulo

Winterschool - 2014

A biorthogonal system in a Banach space X is a family $\left(x_{\alpha}, f_{\alpha}\right)_{\alpha \in \kappa}$ in $X \times X^{*}$ such that $f_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$.

A biorthogonal system in a Banach space X is a family $\left(x_{\alpha}, f_{\alpha}\right)_{\alpha \in \kappa}$ in $X \times X^{*}$ such that $f_{\alpha}\left(x_{\beta}\right)=\delta_{\alpha \beta}$.

What is the relation between the "size" of the space and the largest "size" of a biorthogonal system?

Examples

- Finite dimensional spaces (linear algebra).

Examples

- Finite dimensional spaces (linear algebra).
- Separable Banach spaces with a Schauder basis.

Examples

- Finite dimensional spaces (linear algebra).
- Separable Banach spaces with a Schauder basis.
- Separable Banach spaces (Markushevich).

Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)
If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)
If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)
If K is a compact scattered space and K^{n} is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)
If K is a compact scattered space and K^{n} is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80 's: under CH, there exists a nonmetrizable example.

Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)
If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)
If K is a compact scattered space and K^{n} is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80's: under CH, there exists a nonmetrizable example.
- Todorcevic, 80's: under $\mathfrak{b}=\omega_{1}$, there exists a nonmetrizable example.

Nonseparable Banach spaces - examples

Theorem (Todorcevic, 2006)

If K is a compact space containing a nonseparable space, then $C(K)$ has an uncountable biorthogonal system.

Theorem (folklore, Negrepontis, 1984)
If K is a compact scattered space and K^{n} is hereditarily separable, then $C(K)$ has no uncountable biorthogonal systems.

- Kunen, 80's: under CH, there exists a nonmetrizable example.
- Todorcevic, 80's: under $\mathfrak{b}=\omega_{1}$, there exists a nonmetrizable example.
- B., Koszmider, 2011: consistently, there exists an example of weight ω_{2}.

Nonseparable Banach spaces - nonexistence results

Theorem (Todorcevic, 2006)
Under PID $+\mathfrak{p}>\omega_{1}$, every nonseparable Banach space has an uncountable biorthogonal system.

Nonseparable Banach spaces - nonexistence results

Theorem (Todorcevic, 2006)
Under PID $+\mathfrak{p}>\omega_{1}$, every nonseparable Banach space has an uncountable biorthogonal system.

Are the following equivalent under the PID?

- $\mathfrak{b}=\omega_{1}$.
- There exists a nonseparable Banach space with no uncountable biorthogonal systems.

Nonseparable Banach spaces - nonexistence results

Theorem (B., Todorcevic)
Under PID $+\mathfrak{b}>\omega_{1}$, every nonseparable Banach space with weak*-sequentially separable dual ball has uncountable ε-biorthogonal systems for every $0<\varepsilon<1$.

Nonseparable Banach spaces - nonexistence results

Theorem (B.,Todorcevic)
Under PID $+\mathfrak{b}>\omega_{1}$, every nonseparable Banach space with weak*-sequentially separable dual ball has uncountable ε-biorthogonal systems for every $0<\varepsilon<1$.

Corollary

Under PID, the following are equivalent:

- $\mathfrak{b}=\omega_{1}$.
- There exists a nonseparable Asplund space with no uncountable almost biorthogonal systems.

Sketch of the proof

P-ideal dichotomy: If $\mathcal{I} \subset\left[\omega_{1}\right]^{\omega}$ is a P-ideal, then

- either \exists an uncountable $\Gamma \subseteq \omega_{1}$ such that $[\Gamma]^{\omega} \subseteq \mathcal{I}$;
- or \exists a partition $\omega_{1}=\bigcup_{n \in \omega} S_{n}$ such that $\left[S_{n}\right]^{\omega} \cap \mathcal{I}=\emptyset$.

Sketch of the proof

P-ideal dichotomy: If $\mathcal{I} \subset\left[\omega_{1}\right]^{\omega}$ is a P-ideal, then

- either \exists an uncountable $\Gamma \subseteq \omega_{1}$ such that $[\Gamma]^{\omega} \subseteq \mathcal{I}$;
- or \exists a partition $\omega_{1}=\bigcup_{n \in \omega} S_{n}$ such that $\left[S_{n}\right]^{\omega} \cap \mathcal{I}=\emptyset$.

Given $\mathcal{F} \subseteq\left[\omega_{1}\right]^{\omega}$ such that $|\mathcal{F}|<\mathfrak{b}$, then

$$
\mathcal{I}=\left\{A \in\left[\omega_{1}\right]^{\omega}:(\forall F \in \mathcal{F}) \quad|F \cap A|<\omega\right\}
$$

is a P-ideal.

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that

$$
\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)
$$

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Then we extract a family $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ such that
$\forall x \in X \quad\left(f_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in c_{0}\left(\omega_{1}\right)$

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Then we extract a family $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ such that
$\forall x \in X \quad\left(f_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in c_{0}\left(\omega_{1}\right)$ (equivalently, $\forall \varepsilon>0 \quad\left\{\alpha:\left|f_{\alpha}(x)\right| \geq \varepsilon\right\}$ is finite).

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Then we extract a family $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ such that
$\forall x \in X \quad\left(f_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in c_{0}\left(\omega_{1}\right)$ (equivalently, $\forall \varepsilon>0 \quad\left\{\alpha:\left|f_{\alpha}(x)\right| \geq \varepsilon\right\}$ is finite).

Next we extract an uncountable subfamily $\left(f_{\alpha}\right)_{\alpha \in \Gamma}$ such that

$$
\forall x \in D \quad\left(f_{\alpha}(x)\right)_{\alpha \in \Gamma} \in \ell_{1}(\Gamma)
$$

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Then we extract a family $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ such that
$\forall x \in X \quad\left(f_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in c_{0}\left(\omega_{1}\right)$ (equivalently, $\forall \varepsilon>0 \quad\left\{\alpha:\left|f_{\alpha}(x)\right| \geq \varepsilon\right\}$ is finite).

Next we extract an uncountable subfamily $\left(f_{\alpha}\right)_{\alpha \in \Gamma}$ such that

$$
\left.\forall x \in D \quad\left(f_{\alpha}(x)\right)_{\alpha \in \Gamma} \in \ell_{1}(\Gamma) \text { (equivalently, } \sum_{\alpha \in \Gamma}\left|f_{\alpha}(x)\right|<+\infty\right) .
$$

Suppose $\left(h_{\alpha}\right)_{\alpha \in \omega_{1}} \subseteq X^{*}$ is a (normalized) family such that
$\forall x \in X \quad\left(h_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in \ell_{\infty}^{c}\left(\omega_{1}\right)$ (equivalently, $\left\{\alpha: h_{\alpha}(x) \neq 0\right\}$ is countable) and D is a dense \mathbb{Q}-linear subspace of X.

Then we extract a family $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ such that
$\forall x \in X \quad\left(f_{\alpha}(x)\right)_{\alpha \in \omega_{1}} \in c_{0}\left(\omega_{1}\right)$ (equivalently, $\forall \varepsilon>0 \quad\left\{\alpha:\left|f_{\alpha}(x)\right| \geq \varepsilon\right\}$ is finite).

Next we extract an uncountable subfamily $\left(f_{\alpha}\right)_{\alpha \in \Gamma}$ such that

$$
\left.\forall x \in D \quad\left(f_{\alpha}(x)\right)_{\alpha \in \Gamma} \in \ell_{1}(\Gamma) \text { (equivalently, } \sum_{\alpha \in \Gamma}\left|f_{\alpha}(x)\right|<+\infty\right) .
$$

Finally we construct an almost biorthogonal system.

